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What is What is SuperLUSuperLU

�Solve general sparse linear system A x = b.
� Example: A of dimension 105, only 10 ~ 100 nonzeros per row

�Algorithm: Gaussian elimination (LU factorization: A = 
LU), followed by lower/upper triangular solutions.
� Store only nonzeros and perform operations only on nonzeros.

�Efficient implementation for high-performance 
architectures.

�Software portable on many platforms.
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Software StatusSoftware Status

�Source, Users’ Guide, papers available:
www.nersc.gov/~xiaoye/SuperLU

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthread
(or pragmas)

CLanguage
(callable from F77)

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU
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FillFill--in in Sparse GEin in Sparse GE

�Original zero entry Aij becomes nonzero in L or U.

Natural order: nonzeros = 233 Min. Degree order: nonzeros = 207
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SupernodeSupernode

�Exploit dense submatrices in the L & U factors

�Why are they good?
� Permit use of Level 3 BLAS
� Reduce inefficient indirect addressing (scatter/gather)
� Reduce graph algorithms time by traversing a coarser graph
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SuperLUSuperLU in Quantum Chemistryin Quantum Chemistry

�First solution to a long-standing unsolved 
problem of scattering in a quantum system 
of  3 charged particles. [Recigno, Baertschy, 
Isaacs & McCurdy, Science, 24 Dec 1999]

�The simplest nontrivial example is the 
ionization of a hydrogen atom by collision 
with an electron.

e- + H � H+ + 2e-

�Seek the particles’ wave functions 
represented by the time-independent 
Schrodinger equation.
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Quantum Chemistry (Quantum Chemistry (con’tcon’t))

�Sparse, complex (non-Hermitian), unsymmetric
linear systems.
� Diagonal blocks have the structure of 2D finite 

difference Laplacian matrices. 
� Off-diagonal block is a diagonal matrix.
� Between 6 to 24 blocks, each of dimension between 

200K and 350K �Total dimension as large as 8.4M.

�SuperLU_DIST as block diagonal preconditioner.
M-1A x = M-1b
M = diag(A11, A22, A33, …)

�12 to 35 iterations @ 2 to 3 minutes/iteration on 
24 processors of IBM SP.
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SuperLUSuperLU in Accelerator Cavity Designin Accelerator Cavity Design

� Model large, complex cavities accurately for Next 
Generation Accerlator.

� Maxwell equation in electromagnetic simulation.
� Finite element methods lead to large sparse  

generalized eigensystem K x = λ M x.
� Seek interior eigenpairs, tightly clustered.
� Need to speed up Lanczos convergence by shift-

invert � Seek largest eigenpairs, well separated, 
of the transformed system.

M (K - σ M)-1 x = µ M x
µ = 1 / (λ - σ)

� Shifted linear system is ill-conditioned and needs 
to be solved accurately � Hard for iterative 
solvers!
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Accelerator Cavity Design (Accelerator Cavity Design (con’tcon’t))

�Build exact shift-invert eigen solver with SuperLU_DIST integrated 
into Lanczos code PARPACK.

�DDS model on IBM SP
� Damped, Detuned Structure, include linear and quadratic elements
� 380K with 15.8M nonzeros

� ~4.2 solves per eigenpair @ 24 seconds/solve on 8 procs.
� 1.3M with 20.1M nonzeros

� ~4.5 solves per eigenpair @ 39 seconds/solve on 32 procs.

�Solution accurate to more than 12 sig. digits in double precision.
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Sparse Direct SolversSparse Direct Solvers

� Sparse LU factorization: Pr A Pc
T = L U

� Choose permutations Pr and Pc for numerical stability, minimizing fill-in, and 
maximizing parallelism.

� Phases for sparse direct solvers.
1. Order equations & variables to minimize fill-in.

� NP-hard, so use heuristics based on combinatorics.
2. Symbolic factorization.

� Identify supernodes, set up data structures and allocate memory for L & U.
3. Numerical factorization – usually dominates total time.

� How to pivot?
4. Triangular solutions – usually less than 5% total time.

� In SuperLU_DIST, only numeric phases are parallel so far.
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How and When to pivot?How and When to pivot?

�Goal of pivoting is to control element growth in L & U for stability
�Example: partial pivoting during factorization: PA = LU (GEPP)

� Used in sequential SuperLU and SuperLU_MT

�Partial pivoting implies:
� Dynamic change of fill patterns of L & U

� Must interleave symbolic & numerical factorizations
� Lots of small messages

� Slow on parallel machines with high latency

�Static pivoting used in SuperLU_DIST (GESP)
� Before factorization, scale and permute A to maximize diagonal: Pr Dr A Dc = A’
� During factorization of A’ = LU, replace tiny pivots by √ε ||A||, without changing data 

structures for L & U
� If needed, use a few steps of iterative refinement after the first solution
� Symbolic and numerical factorizations decoupled
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Ordering for Sparse Ordering for Sparse CholeskyCholesky

�Local greedy heuristics
� Minimum degree (upper bound on fill-in) 

� [Tinney/Walker `67, George/Liu `79, Liu `85, Amestoy/Davis/Duff  `94, Ashcraft 
`95, Duff/Reid `95, et al.]

� Minimum deficiency (actual fill-in)
� [Tinney/Walker `67, Ng/Raghavan `97, et al.]

�Global graph partitioning heuristics
� Nested dissection [George `73]
� Multilevel schemes [Hendrickson/Leland `94, Karypis/Kumar `95, et al.]
� Spectral bisection [Simon et al. `90-`95, et al.]
� Geometric and spectral bisection [Chan/Gilbert/Teng `94]

�Hybrid of the above two [Ashcraft/Liu `96, Hendrickson/Rothberg 
`97]
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Ordering for LU Ordering for LU –– Case of Partial PivotingCase of Partial Pivoting

� Use symmetric ordering for Cholesky of ATA
� If  RTR = ATA and PA = LU, then for any row permutation P, 

struct(L+U) ⊆ struct(RT+R)  [George/Ng `87]
� Making R sparse tends to make L & U sparse
� Strategy:

1. Find a good symmetric ordering Pc from ATA
2. Apply Pc columns of A:  A’ = A Pc

T

A’TA’ = (A Pc
T)T (A Pc

T) = Pc (ATA) Pc
T

� Column minimum degree based solely on A
� Matlab; Larimore/Davis/Gilbert/Ng ‘98
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Ordering for LU Ordering for LU –– Case of Static PivotingCase of Static Pivoting

� Use symmetric ordering for Cholesky of AT+A
� If  RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
� Making R sparse tends to make L & U sparse
� Strategy:

1. Find a good symmetric ordering Pc from AT+A 
2. Apply Pc to both rows and columns of A:  A’ = Pc A Pc

T

struct(A’) = struct(PcA Pc
T) ⊆ struct(Pc(AT+A) Pc

T)

� Use symmetric ordering based solely on A
� Work in progress [Amestoy/Li/Ng `02]
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Ordering Interface in Ordering Interface in SuperLUSuperLU

�SuperLU library contains routines:
� Form ATA 
� Form AT+A
� MMD (Multiple Minimum Degree, courtesy of Joseph Liu)
� COLAMD: www.netlib.org/linalg/colamd/

�You may use any other – just input a permutation vector to SuperLU
Example:
� (Par)Metis: www-users.cs.umn.edu/~karypis/metis/
� Chaco: www.cs.sandia.gov/~bahendr/chaco.html
� …
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Ordering ComparisonOrdering Comparison

9.110.735.327.726068WANG4

8.011.98.822.6120750TWOTONE

0.0020.155.54.417758MEMPLUS

68.442.7120.473.551993ECL32

34.040.244.649.838744BBMAT

N Flops (109)Flops (109) Fill (106)Fill (106)Matrix

GESP, AMD(AT+A)GEPP, COLAMD
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Symbolic FactorizationSymbolic Factorization

�Cholesky [George/Liu `81 book]
� Use elimination graph of L and its transitive reduction (elimination tree)
� Complexity linear in output: O(nnz(L))

�LU
� Use elimination graphs of L & U and their transitive reductions (elimination 

DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
� Improved by symmetric structure pruning [Eisenstat/Liu `92]
� Improved by supernodes
� Complexity greater than nnz(L+U), but much smaller than flops(LU)
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Numerical FactorizationNumerical Factorization

�Sequential SuperLU
� Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the 

supernodes

�SuperLU_MT
� Exploit both coarse and fine grain parallelism
� Employ dynamic scheduling to minimize parallel runtime

�SuperLU_DIST
� Enhance scalability by static pivoting and 2D matrix distribution
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2D Block Cyclic Layout and Data Structures2D Block Cyclic Layout and Data Structures
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Create 2D Process Grid from MPI CommunicatorCreate 2D Process Grid from MPI Communicator

�The 2D process grid/communicator must be created from an existing 
base MPI communicator (e.g., MPI_COMM_WORLD).

�SuperLU uses the newly created communicator for all the internal 
communications.

�Example:
M-1A x = M-1 b
M = diag(A11, A22, A33, …)
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Two Ways to Create aTwo Ways to Create a SuperLUSuperLU Process GridProcess Grid

�Superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol, 
gridinfo_t *grid);

� This maps the first nprow*npcol processes in the MPI communicator Bcomm
to SuperLU 2D grid.

�Superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol, 
int usermap[], int ldumap, gridinfo_t *grid);

� This maps an arbitrary set of nprow*npcol processes in the MPI communicator
Bcomm to SuperLU 2D grid.  The ranks of the selected MPI processes are 
given in Usermap[] array. For example:

0      1    2
0
1 161514

131211
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Example MatricesExample Matrices

8.0G11.9M1.22M120,750.43Circuit sim.TWOTONE
68.4G42.7M.38M51,993.93Device sim.ECL32
31.2G40.2M1.77M38,744.54Fluid flowBBMAT

Flopsnnz(L+U)nnz(A) NSymmSourceMatrix 
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ScalabilityScalability

�T3E
� 3D KxKxK cubic grids, scale N2 = K6 with P for constant work per processor
� Up to 12.5 Gflops on 128 processors

� IBM SP: K = 100, N = 1M, 49 Gflops (267 Seconds)
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Summary Summary –– Content of Content of SuperLUSuperLU LibraryLibrary

�LAPACK-style interface
� Simple and expert driver routine
� Computational routines
� Comprehensive testing routines and example programs

�Functionalities
� Minimum degree ordering [MMD, Liu `85] applied to ATA or AT+A
� User-controllable pivoting

� Pre-assigned row and/or column permutations
� Partial pivoting with threshold

� Solving transposed system
� Equilibration
� Condition number estimation
� Iterative refinement
� Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]
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ConclusionsConclusions

�Good implementations of sparse LU on high-performance machines
�More sensitive to latency than dense case
�Need more families of unsymmetric test matrices
�Continuing developments – being funded by DOE TOPS SciDAC 

and NSF NPACI programs
� Improve triangular solution
� ILU preconditioner
� Parallel ordering and symbolic factorization
� Integrate into applications

�“Eigentemplates” book (www.netlib.org/etemplates) for survey of 
other sparse direct solvers
� LLT, LDLT, LU


